UNCOMPROMISING CHEMISTRY DESIGN ETFE FOR DIAPHRAGM PUMPS Fluoropolymers and perfluoro elastomers are materials containing fluorine atoms in their chemical structures. Due to their outstanding chemical resistance and their extremely low surface energy – for low material adhesion - VACUUBRAND uses these materials for all media-contacted parts in their chemical diaphragm vacuum pumps. ## **TABLE FOR CHEMISTRY COMPATIBILITY** | | PTFE | ETFE/ECTFE | FFKM | |---|------|------------|------| | Acid amides Dimethylformamide (DMF), Acetamide, Formamide | ++ | ++ | ++ | | Acids, dilute or weak Acetic acid, Carbonic acid, Butyric acid | ++ | ++ | ++ | | Acids, strong or concentrated
Hydrochloric acid, Sulfuric acid, Nitric acid,
Trifluoroacetic acid (TFA) | ++ | ++ | ++ | | Alcohols, aliphatic
Methanol, Ethanol, Butanol | ++ | ++ | ++ | | Aldehydes
Formaldehyde, Ethanal, Hexanal | ++ | ++ | ++ | | Amines N-Methyl-2-pyrrolidone (NMP), Triethylamine | ++ | ++ | + | | Bases
Sodium hydroxide, Potassium hydroxide, Ammonia | ++ | ++ | ++ | | Esters
Ethyl acetate, Butyl formate, Amyl butyrate | ++ | ++ | ++ | | Ethers Diethyl ether, Tetrahydrofurane, Dioxane | ++ | ++ | ++ | | Hydrocarbons, aliphatic
Pentane, Hexane, Heptane | ++ | ++ | ++ | | Hydrocarbons, aromatic
Benzene, Toluene, Xylene | ++ | ++ | ++ | | Hydrocarbons, halogenated
Methyl chloride, Chloroform, Ethylene chloride | ++ | ++ | ++ | | Ketones
Acetone, Cyclohexanone | ++ | ++* | ++ | | Oxidizing acids, oxidizing agents Ozone, Hydrogen peroxide, Chlorine | ++ | + | ++ | | Sulfoxides Dimethyl sulfoxide (DMSO) | ++ | ++ | ++ | | | | | | PTFE: Polytetrafluoroethylene ETFE: Ethylene tetrafluoroethylene ECTFE: Ethylene chlorotrifluoroethylene FFKM: Perfluoro elastomer **ECTFE** ++ excellent chemical resistance good to limited chemical resistance poor chemical resistance * for some solvents '+'